Neutrinoless double beta decay beyond the "lobster" plot and its connection to cosmology

Julia Harz

ACFI Snowmass Workshop 2020

Neutrinos – what do we know?

"Neutrinos, the Standard Model misfits"

Neutrinos – what do we know?

Neutrinos in the Standard Model are massless

$$L_i \to \left(\begin{array}{c} \nu_i \\ \ell_i \end{array}\right) \qquad m_{\nu} = 0$$

Neutrino **mixing**

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{PMNS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

Neutrino **oscillations** require **massive** neutrinos

$$P(\nu_i \to \nu_j) \propto \Delta m_{ij}^2 \qquad \frac{\Delta m_{12}^2 \sim 7.59 \times 10^{-5} \text{eV}^2}{\Delta m_{23}^2 \sim \Delta m_{31}^2 \sim 2.3 \times 10^{-3} \text{eV}^2}$$

Normal vs. **inverted** hierarchy

How do neutrinos get their masses? What nature do neutrinos have? Are they their own anti-particles?

Why Lepton-Number Violation?

- Masses of the active neutrinos cannot be explained within the SM
- **BUT** right-handed neutrinos could help

Dirac mass

$$y_{\nu}L\epsilon H\nu_{R}^{c}\supset m_{D}\nu_{L}\nu_{R}^{c}$$
 -1/2 0

tiny Yukawa couplings

$$m_{\nu}/\Lambda_{EW} \le 10^{-12}$$

 Lepton number no accidental symmetry anymore

Majorana mass

$$m_M \overline{
u}_R
u_R^c$$

not at tree-level within the SM possible

- higher dimensional operator
- Lepton number violation (LNV)

Lepton-Number Violation

LNV occurs only at odd mass dimension:

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda_1} \mathcal{O}_1^{(5)} + \sum_i \frac{1}{\Lambda_i^3} \mathcal{O}_i^{(7)} + \sum_i \frac{1}{\Lambda_i^5} \mathcal{O}_i^{(9)} + \cdots$$

$$\mathcal{O}_1^{(5)} = L^{lpha}L^{eta}H^{
ho}H^{\sigma}\epsilon_{lpha
ho}\epsilon_{eta\sigma}$$
 3/2 3/2 1 1

$$\mathcal{O}_{14b}^{(9)} = L^{\alpha}L^{\beta}\bar{Q}_{\alpha}\bar{u}^{c}Q^{\rho}d^{c}\epsilon_{\beta\rho}$$
$$\mathcal{O}_{16}^{(9)} = L^{\alpha}L^{\beta}e^{c}d^{c}\bar{e}^{c}\bar{u}^{c}\epsilon_{\alpha\beta}$$

mass dimension

$$\mathcal{O}_{3a}^{(7)} = L^{\alpha}L^{\beta}Q^{\rho}d^{c}H^{\sigma}\epsilon_{\alpha\beta}\epsilon_{\rho\sigma}$$
$$\mathcal{O}_{3b}^{(7)} = L^{\alpha}L^{\beta}Q^{\rho}d^{c}H^{\sigma}\epsilon_{\alpha\rho}\epsilon_{\beta\sigma}$$
$$\mathcal{O}_{8}^{(7)} = L^{\alpha}\bar{e}^{c}\bar{u}^{c}d^{c}H^{\beta}\epsilon_{\alpha\beta}$$

Babu, Leung (2001), de Gouvea, Jenkins (2007), Deppisch, Graf, JH, Huang (2017)

Radiative neutrino mass generation

LNV occurs only at odd mass dimension:

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda_1} \mathcal{O}_1^{(5)} + \sum_i \frac{1}{\Lambda_i^3} \mathcal{O}_i^{(7)} + \sum_i \frac{1}{\Lambda_i^5} \mathcal{O}_i^{(9)} + \cdots$$

$$\mathcal{O}_1^{(5)} = L^{\alpha} L^{\beta} H^{\rho} H^{\sigma} \epsilon_{\alpha\rho} \epsilon_{\beta\sigma}$$

$$\mathcal{O}_{16}^{(9)} = L^{\alpha}L^{\beta}e^{c}d^{c}\bar{e}^{c}\bar{u}^{c}\epsilon_{\alpha\beta}$$

$$\mathcal{O}_{3a}^{(7)} = L^{\alpha}L^{\beta}Q^{\rho}d^{c}H^{\sigma}\epsilon_{\alpha\beta}\epsilon_{\rho\sigma}$$

$$\mathcal{O}_{3b}^{(7)} = L^{\alpha}L^{\beta}Q^{\rho}d^{c}H^{\sigma}\epsilon_{\alpha\rho}\epsilon_{\beta\sigma}$$

$$m_{\nu} \approx \frac{y_d y_u g^4}{(16\pi^2)^4} \frac{v^2}{\Lambda_{16}}$$

Deppisch, Graf, JH, Huang (2017)

Probing LNV interactions – 0vββ decay

Neutrinoless double beta decay

standard mass mechanism

Most stringent limits are currently set by GERDA and Kamland-Zen:

$$T_{1/2}^{\text{Ge}} \ge 0.9 \times 10^{26} \text{ y}$$
 $T_{1/2}^{\text{Xe}} \ge 1.07 \times 10^{26} \text{ y}$

long range contribution

short range contribution

Ovββ decay probes only first generation!

Schechter-Valle Theorem – Black Box Theorem

Schechter, Valle (1982)

Any $\Delta L = 2$ operator that leads to 0vbb will induce a Majorana mass contribution via loop

Dürr, Merle, Lindner (2011)

9-dim $\Delta L = 2$ operator will lead to 0vbb but only tiny contribution to neutrino mass

$$\delta m_{\nu} = 10^{-28} \text{eV}$$

Observation of 0v\u00e4\u00b8 decay does not imply that the mass mechanism is the dominant contribution.

Constraining LNV interactions

standard mass mechanism

$$T_{1/2}^{-1} = G_{0\nu} |\mathcal{M}|^2 |\epsilon_{\alpha}^{\beta}|^2$$

$$T_{1/2}^{-1} = G_{0\nu} \mid \mathcal{M} \mid^2 \mid m_{\beta\beta} \mid^2$$

Leptonic and hadronic current with different chirality structure:

$$\mathcal{L} = \frac{G_F}{\sqrt{2}} \{ j_{V-A}^{\mu} J_{V-A,\mu}^{\dagger} + \sum_{\alpha,\beta} \epsilon_{\alpha}^{\beta} j_{\beta} J_{\alpha}^{\dagger} \}$$

$$\mathcal{O}_{V\pm A} = \gamma^{\mu} (1 \pm \gamma_5)$$

$$\mathcal{O}_{S\pm P} = (1 \pm \gamma_5)$$

$$\mathcal{O}_{T_{R,L}} = \frac{i}{2} [\gamma_{\mu}, \gamma_{\nu}] (1 \pm \gamma_5)$$

$$j_{\beta} = \bar{e} \mathcal{O}_{\beta} \nu$$
$$J_{\alpha}^{\dagger} = \bar{u} \mathcal{O}_{\alpha} d$$

$ \epsilon \times 10^8$		ϵ_{V-A}^{V+A}	ϵ_{V+A}^{V+A}	$\epsilon_{S\pm P}^{S+P}$	$\epsilon_{T_R}^{T_R}$
$^{76}\mathrm{Ge}$	41	0.21	37	0.66	0.07
$^{76}\mathrm{Xe}$	26	0.11	22	0.26	0.03

Deppisch, Hirsch, Päs (2012)

Scales of New Physics

1st generation couplings

Scales of New Physics

Deppisch, Graf, JH, Huang (2017) Deppisch, JH, Huang, Hirsch, Päs (2015)

Uncertainties of Nuclear Matrix Elements

- Dependence on isotope and specific operator
- Differences between different nuclear models
- "the g_A problem" quenching of the axial-vector coupling?

$$\mathcal{M} = \mathcal{M}_{GT} - rac{g_V^2}{g_A^2} \mathcal{M}_F + \mathcal{M}_{T_A}$$

e.g. Suhonen et al., Engel et al., and many more

Engel, Menendez (2016)

Topologies for Neutrinoless Double Beta Decay

		Long	Mediator $(U(1)_{em}, SU(3)_c)$			
#	Decomposition	Range?	S or V_{ρ}	ψ	S' or V'_{ρ}	Models/Refs./Comments
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	(a)	(+1, 1)	(0, 1)	(-1, 1)	Mass mechan., RPV 58 60,
						LR-symmetric models [39],
						Mass mechanism with ν_S [61],
						TeV scale seesaw, e.g., 62,63
			(+1, 8)	(0, 8)	(-1, 8)	<u>[64]</u>
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$		(+1, 1)	(+5/3, 3)	(+2, 1)	
			(+1, 8)	(+5/3, 3)	(+2, 1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$		(+1, 1)	$(+4/3, \overline{\bf 3})$	(+2, 1)	
			(+1, 8)	$(+4/3, \overline{\bf 3})$	(+2, 1)	
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$		(+1, 1)	$(+4/3, \overline{3})$	$(+1/3, \overline{3})$	
	(- 1) (-) (1) ()	(3.)	(+1, 8)	$(+4/3, \overline{3})$	$(+1/3, \overline{3})$	
2-i-b	$(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$	(b)	(+1, 1)	(0, 1)	$(+1/3, \overline{3})$	RPV 58 60, LQ 65 66
2	(-1)(-)(-)(1-)		(+1, 8)	(0,8)	$(+1/3, \overline{3})$	
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$		(+1, 1)	(+5/3, 3)	(+2/3, 3)	
0 " 1	(= 1)(=)(=)(1=)	(1.)	(+1, 8)	(+5/3, 3)	(+2/3, 3)	DDV FOCO I O CELCO
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(b)	(+1, 1)	(0, 1)	(+2/3, 3)	RPV 58-60, LQ 65-66
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	(c)	(+1, 8) $(-2/3, \overline{3})$	(0, 8) $(0, 1)$	(+2/3, 3) $(+1/3, \overline{3})$	RPV 58-60
2-111-a	(ae)(u)(u)(ue)	(c)	(-2/3, 3) (-2/3, 3)	(0, 1) $(0, 8)$	$(+1/3, \overline{3})$ $(+1/3, \overline{3})$	RPV 58-60
2-iii-b	$(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$		(-2/3, 3) (-2/3, 3)	(0, 3) $(-1/3, 3)$	$(+1/3, \overline{3})$ $(+1/3, \overline{3})$	1(1 V [30[00]
2-111-0	(ae)(a)(a)(ae)		$(-2/3, \overline{\bf 3})$ $(-2/3, \overline{\bf 3})$	$(-1/3, \overline{\bf 6})$	$(+1/3, \overline{3})$ $(+1/3, \overline{3})$	
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$		$(+4/3, \overline{3})$	$(+1/3, \overline{3})$	$(-2/3, \overline{\bf 3})$	only with V_{ρ} and V'_{ρ}
0.1	(uu)(e)(e)(uu)		(+4/3, 6)	(+1/3, 6)	(-2/3, 6)	only with v_{ρ} and v_{ρ}
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$		$(+4/3, \overline{3})$	(+5/3, 3)	(+2, 1)	only with V_{ρ}
	(44)(4)(4)		(+4/3, 6)	(+5/3, 3)	(+2, 1)	,
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$		(+2/3, 3)	$(+4/3, \overline{\bf 3})$	(+2, 1)	only with V_{ρ}
			$(+2/3, \overline{\bf 6})$	$(+4/3, \overline{\bf 3})$	(+2, 1)	, p
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	(c)	$(-2/3, \overline{\bf 3})$	(0, 1)	(+2/3, 3)	RPV 58-60
			$(-2/3, \overline{\bf 3})$	(0, 8)	(+2/3, 3)	RPV 58-60
4-ii- a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$		$(+4/3, \overline{3})$	(+5/3, 3)	(+2/3, 3)	only with V_{ρ}
			(+4/3, 6)	(+5/3, 3)	(+2/3, 3)	see Sec. 4 (this work)
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$		$(+4/3, \overline{\bf 3})$	$(+1/3, \overline{3})$	(+2/3, 3)	only with V_{ρ}
	\$1 (Sales Cody 3) (St. 16 (St. 1919))		(+4/3, 6)	(+1/3, 6)	(+2/3, 3)	
5-i	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(c)	(-1/3, 3)	(0, 1)	$(+1/3, {\bf 3})$	RPV [58-60]
			(-1/3, 3)	(0, 8)	$(+1/3, \overline{\bf 3})$	RPV 58-60
5-ii-a	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$		(-1/3, 3)	$(+1/3, \overline{3})$	$(-2/3, \overline{3})$	only with V'_{ρ}
			(-1/3, 3)	(+1/3, 6)	(-2/3, 6)	
5-ii-b	$(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$		(-1/3, 3)	(-4/3, 3)	$(-2/3, \overline{3})$	only with V'_{ρ}
			(-1/3, 3)	(-4/3, 3)	(-2/3, 6)	

Bonnet, Hirsch, Ota, Winter (2014)

$$\mathcal{O}_9 = \frac{c_9}{\Lambda^5} \bar{u} \bar{u} \bar{d} \bar{d} \bar{e} \bar{e}$$

$$\mathcal{O}_9 = \frac{c_9}{\Lambda^5} \bar{u} \bar{u} \bar{d} \bar{d} \bar{e} \bar{e}$$

$$\Lambda \ge (1.2 - 3.2) g_{\text{eff}}^{4/5} \text{TeV}$$

Example: Left-Right Symmetric Model

Helo, Kovalenko, Hirsch, Päs (2013)

Different possible contributions to 0vbb:

Corresponding process at LHC:

Helo, Kovalenko, Hirsch, Päs (2013)

Helo, Kovalenko, Hirsch, Päs (2013)

Refined study of one model:

$$\mathcal{L}_{\text{INT}} = g_1 \bar{Q}_i^{\alpha} d^{\alpha} S_i + g_2 \epsilon^{ij} \bar{L}_i F S_j^* + \text{H.c.}$$

Including:

- SM + detector background
- running of the operators
- long distance contributions

$$\frac{C_{\text{eff}}}{\Lambda} \mathcal{O}_{2+}^{++} \bar{e}_L e_R^c + \text{H.c.} \to \frac{C_{\text{eff}} \Lambda_H^2 F_{\pi}^2}{2\Lambda^5} \pi^- \pi^- \bar{e}_L e_R^c + \text{H.c.},$$

Peng, Ramsey-Musolf, Winslow (2015)

QCD corrections and running

Leading order QCD corrections to the **complete set of the short-range** $d = 9 \text{ } 0v\beta\beta$ -operators covering the low-energy limits of any possible underlying high-energy scale model

$$\mathcal{O}_{1}^{XY} = 4(\bar{u}P_{X}d)(\bar{u}P_{Y}d) j,
\mathcal{O}_{2}^{XX} = 4(\bar{u}\sigma^{\mu\nu}P_{X}d)(\bar{u}\sigma_{\mu\nu}P_{X}d) j,
\mathcal{O}_{3}^{XY} = 4(\bar{u}\gamma^{\mu}P_{X}d)(\bar{u}\gamma_{\mu}P_{Y}d) j,
\mathcal{O}_{4}^{XY} = 4(\bar{u}\gamma^{\mu}P_{X}d)(\bar{u}\sigma_{\mu\nu}P_{Y}d) j^{\nu},
\mathcal{O}_{5}^{XY} = 4(\bar{u}\gamma^{\mu}P_{X}d)(\bar{u}P_{Y}d) j_{\mu}$$

$$\begin{split} \left[T_{1/2}^{0\nu\beta\beta}\right]^{-1} &= G_{1} \left|\beta_{1}^{XX} \left(C_{1}^{LL}(\Lambda) + C_{1}^{RR}(\Lambda)\right) + \beta_{1}^{LR} \left(C_{1}^{LR}(\Lambda) + C_{1}^{RL}(\Lambda)\right) + \right. \\ &+ \beta_{2}^{XX} \left(C_{2}^{LL}(\Lambda) + C_{2}^{RR}(\Lambda)\right) + \\ &+ \left. \beta_{3}^{XX} \left(C_{3}^{LL}(\Lambda) + C_{3}^{RR}(\Lambda)\right) + \beta_{3}^{LR} \left(C_{3}^{LR}(\Lambda) + C_{3}^{RL}(\Lambda)\right)\right|^{2} + \\ &+ \left. G_{2} \left|\beta_{4}^{XX} \left(C_{4}^{RR}(\Lambda) + C_{4}^{RR}(\Lambda)\right) + \beta_{4}^{LR} \left(C_{4}^{LR}(\Lambda) + C_{4}^{RL}(\Lambda)\right) + \right. \\ &+ \left. \beta_{5}^{XX} \left(C_{5}^{RR}(\Lambda) + C_{5}^{RR}(\Lambda)\right) + \beta_{5}^{LR} \left(C_{5}^{LR}(\Lambda) + C_{5}^{RL}(\Lambda)\right)\right|^{2} , \end{split}$$

e.g.
$$eta_1^{XX} = \mathcal{M}_1 \ \ U_{(12)11}^{XX} + \mathcal{M}_2 U_{(12)21}^{XX},$$

Gonzalez, Hirsch, Kovalenko (2015)

QCD corrections and running

QCD corrections can give sizeable impact to short range contribution

	With QCD		Without QCD	With	QCD	Without QCD
^{A}X	$ C_1^{XX}(\Lambda_1) $	$ C_1^{XX}(\Lambda_2) $	$ C_1^{XX} $	$ C_1^{LR,RL}(\Lambda_1) $	$ C_1^{LR,RL}(\Lambda_2) $	$ C_1^{LR,RL} $
$^{76}\mathrm{Ge}$	5.0×10^{-10}	3.8×10^{-10}	$2.6 imes10^{-7}$	1.5×10^{-8}	9.1×10^{-9}	$2.6 imes10^{-7}$
$^{136}\mathrm{Xe}$	3.4×10^{-10}	2.6×10^{-10}	$1.8 imes 10^{-7}$	9.7×10^{-9}	6.1×10^{-9}	$1.8 imes 10^{-7}$
^{A}X	$ C_2^{XX}(\Lambda_1) $	$ C_2^{XX}(\Lambda_2) $	$ C_2^{XX} $	_	_	_
$^{76}\mathrm{Ge}$	3.5×10^{-9}	5.2×10^{-9}	1.4×10^{-9}	_	_	_
$^{136}\mathrm{Xe}$	2.4×10^{-9}	3.5×10^{-9}	9.4×10^{-10}	_	_	_
$A_{\mathbf{X}}$	$ C_3^{XX}(\Lambda_1) $	$ C_3^{XX}(\Lambda_2) $	$ C_3^{XX} $	$ C_3^{LR,RL}(\Lambda_1) $	$ C_3^{LR,RL}(\Lambda_2) $	$ C_3^{LR,RL} $
$^{76}\mathrm{Ge}$	1.5×10^{-8}	1.6×10^{-8}	1.1×10^{-8}	2.0×10^{-8}	2.1×10^{-8}	1.8×10^{-8}
$^{136}\mathrm{Xe}$	9.7×10^{-9}	1.1×10^{-8}	7.4×10^{-9}	1.4×10^{-8}	1.4×10^{-8}	1.2×10^{-8}
^{A}X	$ C_4^{XX}(\Lambda_1) $	$ C_4^{XX}(\Lambda_2) $	$ C_4^{XX(0)} $	$ C_4^{LR,RL}(\Lambda_1) $	$ C_4^{LR,RL}(\Lambda_2) $	$ C_4^{LR,RL(0)} $
$^{76}\mathrm{Ge}$	5.0×10^{-9}	3.9×10^{-9}	$1.2 imes10^{-8}$	1.7×10^{-8}	1.9×10^{-8}	1.2×10^{-8}
$^{136}\mathrm{Xe}$	3.4×10^{-9}	2.7×10^{-9}	$7.9 imes 10^{-9}$	1.2×10^{-8}	1.3×10^{-8}	7.9×10^{-9}
^{A}X	$ C_5^{XX}(\Lambda_1) $	$ C_5^{XX}(\Lambda_2) $	$ C_5^{XX} $	$ C_5^{LR,RL}(\Lambda_1) $	$ C_5^{LR,RL}(\Lambda_2) $	$ C_5^{LR,RL} $
$^{76}\mathrm{Ge}$	2.3×10^{-8}	1.4×10^{-8}	$1.2 imes10^{-7}$	3.9×10^{-8}	2.8×10^{-8}	$1.2 imes10^{-7}$
$^{136}\mathrm{Xe}$	1.6×10^{-8}	9.5×10^{-9}	$8.2 imes 10^{-8}$	2.8×10^{-8}	2.0×10^{-8}	$8.2 imes 10^{-8}$

Gonzalez, Hirsch, Kovalenko (2015)

QCD corrections sub-dominant for long range contribution (less than 60%)

Arbelaez, Gonzalez, Hirsch, Kovalenko (2016)

- Extrapolation of perturbative results to sub-GeV non-perturbative scales on the basis of QCD coupling constant "freezing" behavior using Background Perturbation Theory
 - → only **moderate** dependence

Gonzalez, Hirsch, Kovalenko (2018)

"Master formula"

Cirigliano, Dekens, de Vries, Graesser, Mereghetti (2017, 2018) Graf, Deppisch, Iachello, Kotila (2018)

"Master formula"

Cirigliano, Dekens, de Vries, Graesser, Mereghetti (2017, 2018) Graf, Deppisch, Iachello, Kotila (2018)

A new leading contribution to 0vBB

$$V_{\nu,CT} = -2g_{\nu}^{NN} \ \tau^{(1)+} \tau^{(2)+}$$

$$H_{\rm LNV} = 2G_F^2 V_{ud}^2 \ m_{\beta\beta} \ \bar{e}_L C \bar{e}_L^T \ V_{\nu}$$

$$V_0(\mathbf{q}) = \tilde{C} + V_{\pi}(\mathbf{q}), \quad V_{\pi}(\mathbf{q}) = -\frac{g_A^2}{4F_{\pi}^2} \frac{m_{\pi}^2}{\mathbf{q}^2 + m_{\pi}^2}$$

Cirigliano, Dekens, de Vries, Graesser, Mereghetti, Pastore, van Kolck (2018)

Implications on Leptogenesis

- generation of lepton asymmetry via heavy neutrino decays
- competition with lepton number violating (LNV) washout processes
- conversion to baryon asymmetry via sphaleron processes

Fukugita et al. 1986

$$Hz \frac{dN_{N_1}}{dz} = -(\Gamma_D + \Gamma_S)(N_{N_1} - N_{N_1}^{\text{eq}})$$
$$Hz \frac{dN_L}{dz} = \epsilon_1 \Gamma_D(N_{N_1} - N_{N_1}^{\text{eq}}) - \Gamma_W N_L$$

$$\Delta L=1$$
 source of CP violation

sphaleron processes

$$\Delta L=1$$
 scattering processes

$$\Delta L = 2$$
 washout processes

Implications on Leptogenesis

The generation of a baryon asymmetry – baryogenesis – can be created by a lepton asymmetry – leptogenesis:

In turn, lepton number violation (LNV) can destroy a lepton asymmetry, and thus even a baryon asymmetry!

Lepton Asymmetry Washout

 LNV operator would cause washout of pre-existing net lepton asymmetry in the early Universe

$$zHn_{\gamma}\frac{d\eta_{L_{e}}}{dz} = -\left(\frac{n_{L_{e}}n_{\bar{e^{c}}}}{n_{L_{e}}^{\text{eq}}n_{\bar{e^{c}}}^{\text{eq}}} - \frac{n_{u^{c}}n_{\bar{d^{c}}}n_{\bar{H}}}{n_{u^{c}}^{\text{eq}}n_{\bar{d^{c}}}^{\text{eq}}n_{\bar{H}}}\right)\gamma^{\text{eq}}(L_{e}\bar{e^{c}} \to u^{c}\bar{d^{c}}\bar{H})$$

$$zHn_{\gamma}\frac{d\eta_{\Delta L_e}}{dz} = -c_D \frac{T^{2D-4}}{\Lambda_D^{2D-8}} \eta_{\Delta L_e}$$

 $\gamma^{eq} \propto rac{T^{2D-4}}{\Lambda_D^{2D-8}}$

washout efficient if

 c_D operator specific factor

 $\frac{\Gamma_W}{H} \equiv \frac{c_D}{n_{\gamma} H} \frac{T^{2D-4}}{\Lambda_D^{2D-8}} = c_D' \frac{\Lambda_{\text{Pl}}}{\Lambda_D} \left(\frac{T}{\Lambda_D}\right)^{2D-9} > 1$

 η_L lepton density

If 0vßß is observed, washout efficient in the temperature interval

$$\Lambda_D \left(\frac{\Lambda_D}{c_D' \Lambda_{\text{Pl}}} \right)^{\frac{1}{2D-9}} \equiv \lambda_D < T < \Lambda_D$$

Ovββ and Baryogenesis

Potential to falsify baryogenesis models!

Deppisch, Graf, JH, Huang (2018) Deppisch, JH, Huang, Hirsch, Päs (2015)

Lepton asymmetry washout

1st generation couplings

Deppisch, Graf, JH, Huang (2017) Deppisch, JH, Huang, Hirsch, Päs (2015)

Distinguishing different operators

 discrepancy between sum of neutrino masses from cosmology and 0vββ half life measurements could indicate non-standard mechanism

• Angular distributions allows to discriminate O_7 from others, due to e_R^- and e_L^+ in the final state

Ali, Borisov, Zhuridov (2006), SuperNemo, Arnold et al. (2010)

Distinguishing different operators

 distinguishing between different mechanisms via measurements in different isotopes

$$[T_{1/2}^{NP}]^{-1} = \epsilon_{NP}^2 G^{NP} |\mathcal{M}^{NP}|^2$$

$$\frac{T_{1/2}(^{A}X)}{T_{1/2}(^{76}Ge)} = \frac{|\mathcal{M}(^{76}Ge)|^{2}G(^{76}Ge)}{|\mathcal{M}(^{A}X)|^{2}G(^{A}X)}$$

Deppisch, Päs (2006)

Isotope	Confidence	Number of Isotopes					
Ordering	Level	2	3	4	5	6	
Atomic Number	90%	<2%	8%	16%	23%	24%	
	68%	$<\!2\%$	19%	36%	45%	48%	
$\Gamma^{0\nu}$ Spread	90%	6%	18%	27%	27%	24%	
	68%	13%	29%	41%	42%	47%	
Experimental	90%	3%	11%	24%	24%	24%	
Readiness	68%	7%	18%	46%	47%	47%	
Alternative	90%	3%	11%	17%	15%	24%	
Ordering	68%	7%	18%	34%	32%	47%	
Experimental	90%	< 2%	6%	14%	16%		
Readiness	68%	<2%	12%	22%	24%		
(All 7 models, no ¹¹⁶ Cd)							

Gehmann, Elliot (2007)

• observation of $0v\beta\beta$ via O_9 and O_{11} will **imply observation of LNV at LHC**

Probing LNV interactions – LHC

Washout processes could be observable at the LHC

$$\log_{10} \frac{\Gamma_W}{H} > 6.9 + 0.6 \left(\frac{M_X}{\text{TeV}} - 1\right) + \log_{10} \frac{\sigma_{\text{LHC}}}{\text{fb}}$$

Observation of any washout process at LHC would falsify high scale baryogenesis!

(scale of asymmetry generation *above* M_v)

Deppisch, JH, Hirsch, Phys. Rev. Lett. (2014) Deppisch, JH, Hirsch, Päs, Int. J. Mod. Phys. A (2015)

Combining LHC & 0vBB

$$\mathcal{L} = g_{Q}\overline{Q}Sd_{R} + g_{L}\overline{L}(i\tau^{2})S^{*}F - m_{S}^{2}S^{\dagger}S - \frac{m_{F}}{2}\overline{F^{c}}F + g_{S}(S^{\dagger}S)^{2} + \lambda_{HS}(S^{\dagger}H)^{2} + \text{h.c.}$$

Comprehensive analysis confirms EFT results and shows interesting interplay between collider and $0\nu\beta\beta$ reach.

JH, Ramsey-Musolf, Shen, Urrutia, in preparation

Constraining LNV interactions with rare kaon decays

$$\mathcal{O}_{3b}^{(7)} = L^{\alpha}L^{\beta}Q^{\rho}d^{c}H^{\sigma}\epsilon_{\alpha\rho}\epsilon_{\beta\sigma}$$

GIM suppressed

Not explicit LNV!

- No GIM suppression
- Includes first and second generation

How are higher dimensional operators constraint by rare kaon decays?

Deppisch, Fridell, JH (2020)

Constraining power at E949

SM, lepton number conserving vector current

$$\mathcal{L}_{\mathrm{SM}}^{K \to \pi \nu \bar{\nu}} = \frac{1}{\Lambda_{\mathrm{SM}}^2} \left(\bar{\nu}_i \gamma^{\mu} \nu_i \right) \left(\bar{d} \gamma_{\mu} s \right)$$

BSM, lepton number violating scalar current

$$\mathcal{L}_{\mathrm{BSM}}^{K \to \pi \nu \nu} = \frac{v}{\Lambda_{\mathrm{BSM}}^2} \left(\nu_i \nu_j \right) \left(\bar{d}s \right)$$

- → different phase space distribution
- different acceptance:

$${\rm BR}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm E949}^{\rm vector} < 3.35 \times 10^{-10} \text{ at } 90\% \text{ CL}$$

 ${\rm BR}(K^+ \to \pi^+ \nu \bar{\nu})_{\rm E949}^{\rm scalar} < 21 \times 10^{-10} \text{ at } 90\% \text{ CL}$

Deppisch, Fridell, JH (2020)

Constraining power at NA62

Summary of sensitivity to scalar current (based on kinematics only):

Experiment	SM (vector)	LNV (scalar)
NA62 SR 1	6%	0.3%
NA62 SR 2	17%	15%
$\overline{\text{E949 }\pi\nu\overline{\nu}(1)}$	29%	2%
E949 $\pi\nu\overline{\nu}(2)$	45%	38%
КОТО	64%	30%

Experiments are generally more sensitive to vector currents

$$s = (E_K - E_\pi)^2$$

Possibility to disentangle a possible signal by improving on experimental sensitivity and strategy?

Deppisch, Fridell, JH (2020)

Summary

Process	Experimental limit	0	$\Lambda_{ijkn}^{\mathrm{NP}} [\mathrm{TeV}]$	$\hat{\lambda}$ [TeV]
$K^+ \to \pi^+ \nu \nu$	$BR_{future}^{NA62} < 1.11 \times 10^{-10}$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 19.6$	0.213
$K^+ o \pi^+ \nu \nu$	$BR_{current}^{NA62} < 1.78 \times 10^{-10} [67]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 17.2$	0.196
$K_L \to \pi^0 \nu \nu$	$BR_{current}^{KOTO} < 3.0 \times 10^{-9} [71]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 12.3$	0.178
$B^+ \to \pi^+ \nu \nu$	BR $< 1.4 \times 10^{-5} [52]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iibd} > 1.4$	0.174
$B^+ o K^+ u u$	BR $< 1.6 \times 10^{-5} [52]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iibs} > 1.4$	0.174
$B^0 \to \pi^0 \nu \nu$	BR $< 9 \times 10^{-6} [52]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iibd} > 1.5$	0.174
$B^0 o K^0 u u$	BR $< 2.6 \times 10^{-5} [52]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iibs} > 1.3$	0.174
$K^+ \to \mu^+ \bar{\nu}_e$	BR $< 3.3 \times 10^{-3} [32]$	\mathcal{O}_{3a}	$\Lambda_{\mu esu} > 2.4$	0.174
$\pi^+ \to \mu^+ \bar{\nu}_e$	BR $< 1.5 \times 10^{-3} [32]$	\mathcal{O}_{3a}	$\Lambda_{\mu eud} > 1.9$	0.174
$\pi^0 \to \nu \nu$	BR $< 2.9 \times 10^{-13} [78]$	\mathcal{O}_{3b}	$\Lambda_{\nu\nu ud} > 3.4$	0.174
0 uetaeta	$T_{1/2}^{136\text{Xe}} \ge 1.07 \times 10^{26} \text{ yrs } [79]$	\mathcal{O}_{3b}	$\Lambda_{eeud} > 330$	3.5
$\mu^- \to e^+$	$R_{\mu^-e^+}^{\text{Ti}} < 1.7 \times 10^{-12} [80]$	\mathcal{O}_{14b}	$\Lambda_{\mu eud} > 0.01$	0.174

Bright future perspective – B-meson constraints still in LHC reach. Could imply strong lepton asymmetry washout*).

*) If LNV interaction is confirmed.

Is LNV only possible with Majorana particles?

Neutrinoless Quadruple Decay

$$(A,Z) \to (A,Z+4)+4e^{-}$$

$$(A,Z) \to (A,Z+4)+4e^{-}$$

$$(B-L)=4$$

$$(B-L)=4$$

$$\frac{\tau_{1/2}^{0\nu 4\beta}}{\tau_{1/2}^{2\nu 2\beta}} \simeq \left(\frac{Q_{0\nu 2\beta}}{Q_{0\nu 4\beta}}\right)^{11} \left(\frac{\Lambda^4}{q^{12}G_F^4}\right) \simeq 10^{46} \left(\frac{\Lambda}{\text{TeV}}\right)^4$$

pessimistic estimate – light mediators, resonances...

Majorana Neutrinos are **not** generally a pre-requisite for LNV

NO!

LNV with **Dirac neutrinos** @ Neutrinoless Quadruple Decay!

 $(\Delta L = 4)$

Heeck, Rodejohann (2013)

Can one ever prove neutrinos are Dirac?

$$R = \frac{\Gamma_{0\nu2\beta}}{\Gamma_{0\nu4\beta}}$$

$$R = \frac{Q_{\beta\beta}^5 (\frac{1}{\Lambda^5})^2 q^6}{Q_{4\beta}^{11} (\frac{1}{\Lambda^{14}})^2 q^{18}} \sim 10^{82}$$

Should a **0v4ß decay** signal ever be established, **unaccompanied by 0v2ß** decays, then one would **rule out Majorana neutrinos**

Caveats may exist?

Hirsch, Srivastava, Valle (2018)

Non-standard Majoron Emission

$$\mathcal{L}_{0\nu\beta\beta\phi} = \frac{G_F \cos \theta_C}{\sqrt{2}} \left(j_L^{\mu} J_{L\mu} + \frac{\epsilon_{RL}^{\phi}}{m_p} j_R^{\mu} J_{L\mu} \phi + \frac{\epsilon_{RR}^{\phi}}{m_p} j_R^{\mu} J_{R\mu} \phi \right) + \text{h.c.}$$

Isotope	$T_{1/2} [y]$	$ \epsilon_{RL}^{\phi} $	$ \epsilon_{RR}^{\phi} $
$^{82}\mathrm{Se}$	3.7×10^{22} [14]	4.1×10^{-4}	4.6×10^{-2}
$^{136}\mathrm{Xe}$	2.6×10^{24} [13]	1.1×10^{-4}	1.1×10^{-2}
82 Se	1.0×10^{24}	8.0×10^{-5}	8.8×10^{-3}
$^{136}\mathrm{Xe}$	1.0×10^{25}	5.7×10^{-5}	5.8×10^{-3}

$$\Lambda_{\mathrm{NP,RL}}^{\mathrm{fut}} \approx 1.3 \mathrm{TeV}$$

 $\Lambda_{\mathrm{NP,RR}}^{\mathrm{fut}} \approx 270 \mathrm{GeV}$

New type of interaction distinguishable from background

Cepedello, Deppisch, Gonzalez, Hati, Hirsch, Päs (2019)

Neutrino Oscillations & 0vββ

$$\begin{split} |\nu_i\rangle &= \sum_{\alpha} U_{\alpha i} \, |\nu_{\alpha}\rangle \\ |\nu_{\alpha}\rangle & \text{flavour eigenstates} \\ |\nu_i\rangle & \text{mass eigenstates} \\ U_{\alpha i} & \text{Pontecorvo-Maki-Nakagawa-Sakata} \\ \text{(PMNS) mixing matrix} \end{split}$$

- Solar experiments
 Homestake, Chlorine, Gallex/GNO, SAGE, (Super)
 Kamiokande, SNO, Borexino
- Atmospheric experiments IceCube, ANTARES, DeepCore, Super-Kamiokande
- Reactor experiments
 KamLAND, Double Chooz, Daya Bay
- Accelerator experiments T2K, MINOS, NOvA

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Neutrino Oscillations & 0v\beta\beta

$$\langle m_{ee} \rangle = \left| c_{12}^2 c_{13}^2 \, m_1 + s_{12}^2 c_{13}^2 \, m_2 \, e^{2i\phi_{12}} + s_{13}^2 \, m_3 \, e^{2i\phi_{13}} \right|$$

- Uncertainty from unknown Majorana phase
- Quasi-degenerate region above 0.2 eV
- Accidental cancellation for NO

Lindner, Merle, Rodejohann (2006)

Neutrino Oscillations & 0v\beta\beta

Combined fit

Future projection with JUNO

JUNO can determine **minimal value** of the effective mass with **almost no uncertainty** → fixes the half life that needs to be addressed

Esteban, Gonzalez-Garcia, Hernandez-Cabezudo, Maltoni, Schwetz (2018+)
Anamiati, Romeri, Hirsch, Ternes, Tortola (2019+)
Capozzi, Di Valentino, Lisi, Marrone, Melchiorri, Palazzo (2017+)
Ge. Rodejohann (2018)

Neutrino Oscillations & 0v\u00a3\u00bb

Combined fit

Future projection with JUNO

JUNO can determine **minimal value** of the effective mass with **almost no uncertainty** → fixes the half life that needs to be addressed

Esteban, Gonzalez-Garcia, Hernandez-Cabezudo, Maltoni, Schwetz (2018+)
Anamiati, Romeri, Hirsch, Ternes, Tortola (2019+)
Capozzi, Di Valentino, Lisi, Marrone, Melchiorri, Palazzo (2017+)
Ge, Rodejohann (2015+)

Light Sterile Neutrinos – Interplay 0vββ & KATRIN

Hypothesis: KATRIN sees a kink

$${}^{3}{\rm H} \rightarrow {}^{3}{\rm He} + e^{-} + \bar{\nu}_{e}$$

$$m_4 \in [1 \text{ KeV}, 18.5 \text{ KeV}], \quad |U_{e4}|^2 > 10^{-6}.$$

$$\frac{d\Gamma}{dE} = \Theta\left(E_0 - E - m_\beta\right) \left(1 - |U_{e4}|^2\right) \frac{d\Gamma}{dE} \left(m_\beta\right) + \Theta\left(E_0 - E - m_4\right) |U_{e4}|^2 \frac{d\Gamma}{dE} \left(m_4\right)$$

Assumption: 3 active + 1 sterile neutrino:

$$-\mathcal{L}_{cc} = \frac{g}{\sqrt{2}} U_{ji} \bar{\ell}_j \gamma^{\mu} P_L \nu_i W_{\mu}^- + \text{H.c.}$$

Impact on neutrinoless double beta decay:

$$m_{ee}^{(3+1)} = \sum_{i=1}^{4} U_{ei}^2 p^2 \frac{m_i}{p^2 - m_i^2} \simeq \sum_{i=1}^{4} U_{ei}^2 m_i \equiv m_{ee}^{(SM_{\nu})} + m_4 U_{e4}^2$$

Abada, Hernandez-Cabezudo, Marcano (2019)

Light Sterile Neutrinos – Interplay 0vββ & KATRIN

- possible kink @ KATRIN would imply that IO and NO might **not be distinguishable** anymore with 0vββ
- Observation of 0vββ would not necessarily imply IO
- Non-observation would not rule out IO due to cancellations for large enough m₄U²_{e4}

Abada, Hernandez-Cabezudo, Marcano (2019)

Light Sterile Neutrinos – Interplay 0vββ & KATRIN

Assumption: 3 active + 2 sterile neutrinos (See saw type-I):

$$m_{ee} = \sum_{i=1}^{5} U_{ei}^2 p^2 \frac{m_i}{p^2 - m_i^2} \simeq m_{ee}^{(3+1)} + U_{e5}^2 m_5 \frac{p^2}{p^2 - m_5^2}$$

1st sterile neutrino in KATRIN reach, 2nd variable

$$m_{ee} \simeq m_{ee}^{(3+1)} \times \left[1 - \frac{p^2}{p^2 - m_5^2} \right]$$

Abada, Hernandez-Cabezudo, Marcano (2019)

Interesting interplay between KATRIN & 0vbb prospects

Isotope dependent cancellation between two **different** exchange mechanisms (two different NMEs)

Pascoli, Mitra, Wong (2014)

Heavy Sterile Neutrinos

$$\left| \frac{1}{T_{1/2}^{0\nu}} \right| = G^{0\nu} g_A^4 m_p^2 |\mathcal{M}_N^{0\nu}|^2 \left| \sum_{i=1}^3 \frac{U_{ei}^2 m_i}{\langle \mathbf{p}^2 \rangle} + \sum_{i=1}^{n_S} \frac{V_{eN_i}^2 m_{N_i}}{\langle \mathbf{p}^2 \rangle + m_{N_i}^2} \right|^2$$

Bolton, Deppisch, Dev (2019) Atre, Han, Pascoli, Zhang (2009)

Heavy Sterile Neutrinos

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu}g_A^4 m_p^2 |\mathcal{M}_N^{0\nu}|^2 \left| \sum_{i=1}^3 \frac{U_{ei}^2 m_i}{\langle \mathbf{p}^2 \rangle} + \sum_{i=1}^{n_S} \frac{V_{eN_i}^2 m_{N_i}}{\langle \mathbf{p}^2 \rangle + m_{N_i}^2} \right|^2$$

Bolton, Deppisch, Dev (2019)

Heavy Sterile Neutrinos

$$\frac{1}{T_{1/2}^{0\nu}} = G^{0\nu} g_A^4 m_p^2 |\mathcal{M}_N^{0\nu}|^2 \left| \sum_{i=1}^3 \frac{U_{ei}^2 m_i}{\langle \mathbf{p}^2 \rangle} + \sum_{i=1}^{n_S} \frac{V_{eN_i}^2 m_{N_i}}{\langle \mathbf{p}^2 \rangle + m_{N_i}^2} \right|^2$$

$$10^{-2}$$
.....

—— future

current

 $\Delta r \rightarrow 0$ leads to **pseudo-Dirac limit** where lepton number is approximately conserved and $0v\beta\beta$ forbidden

Bolton, Deppisch, Dev (2019)

Conclusions

Summary

- 0vββ has huge potential to probe LNV and a Majorana nature of the neutrino
- Combination with neutrino oscillations powerful to constrain specific models
- Many non-standard contributions possible, many topologies and UV completions
- 0vββ and LHC compete against better sensitivity
- QCD running is important and can affect conclusions → "master formula"
- 0vββ can shed light on baryogenesis
- Many ideas to disentangle different contributions
- Open questions & uncertainties in nuclear physics

Thank you for your attention!

Ovββ and Baryogenesis

$$T_{1/2}^{-1} = G_{0\nu} |\mathcal{M}|^2 |\epsilon_{\alpha}^{\beta}|^2$$

Observation would fix the **effective coupling** for one operator

O	Operator
1^{H^2}	$L^i L^j H^k H^l \overline{H}^t H_t \epsilon_{ik} \epsilon_{jl}$
2	$L^i L^j L^k e^c H^l \epsilon_{ij} \epsilon_{kl}$
3_a	$L^i L^j Q^k d^c H^l \epsilon_{ij} \epsilon_{kl}$
$ _{3_b}$	$L^i L^j Q^k d^c H^l \epsilon_{ik} \epsilon_{jl}$
4_a	$L^i L^j \overline{Q}_i \bar{u^c} H^k \epsilon_{jk}$
4_b^\dagger	$L^i L^j \overline{Q}_k u^{ar{c}} H^k \epsilon_{ij}$
8	$L^i \bar{e^c} \bar{u^c} d^c H^j \epsilon_{ij}$

$$\frac{G_F \epsilon_7}{\sqrt{2}} = \frac{g^3 v}{2\Lambda_7^3}$$

effective coupling can be related to the scale of the operator

\mathcal{O}_D	$\Lambda_D^0 \ [{ m GeV}]$
$\overline{\mathcal{O}_5}$	9.1×10^{13}
\mathcal{O}_7	2.6×10^{4}
\mathcal{O}_9	2.1×10^3
\mathcal{O}_{11}	1.0×10^{3}

$$\frac{\Gamma_W}{H} > 1$$

$$\Lambda_7 \left(\frac{\Lambda_7}{c_7' \Lambda_{Pl}}\right)^{\frac{1}{5}} \lambda_7 < T < \Lambda_7$$

Limit above which the washout is highly effective can be calculated in dependence of the operator scale

Deppisch, Graf, JH, Huang (2018) Deppisch, JH, Huang, Hirsch, Päs (2015)

Ovββ and Baryogenesis

Potential to falsify baryogenesis models!

Deppisch, Graf, JH, Huang (2018) Deppisch, JH, Huang, Hirsch, Päs (2015)

Ovββ and Baryogenesis

Deppisch, Graf, JH, Huang (2018) Deppisch, JH, Huang, Hirsch, Päs (2015)

Side remark: Loop enhanced rate of neutrinoless double beta decay via virtuality of the particle in the loop

Rodejohann, Xu (2019)

Putting pieces together

1st generation couplings

\mathcal{O}		$\sum_{i} \Lambda_{iisd}^{\text{E949}} \text{ [TeV]}$	$m_ u$	$\Lambda^{m_{\nu}}$ [TeV]
1^{y_d}	$\frac{v^3}{\Lambda^5}$	2.4	$\frac{y_d}{16\pi^2} \frac{v^4}{\Lambda^3}$	11.6
3b	$\frac{v}{\Lambda^3}$	11.5	$\frac{y_d}{16\pi^2} \frac{v^2}{\Lambda}$	5.2×10^4
$3b^{H^2}$	$f(\Lambda)\frac{v}{\Lambda^3}$	5.7	$\frac{y_d}{16\pi^2} \frac{v^2}{\Lambda} f(\Lambda)$	330
5	$\frac{1}{16\pi^2} \frac{v}{\Lambda^3}$	2.6	$\frac{y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	330
10	$\frac{1}{16\pi^2} \frac{y_e v}{\Lambda^3}$	0.8	$\frac{y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda}$ $\frac{y_e y_d}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	9.6×10^{-4}
11b	$\frac{1}{16\pi^2} \frac{y_d v}{\Lambda^3}$	0.8	$\frac{y_d^2}{(16\pi^2)^2} \frac{v^2}{\Lambda}$	8.9×10^{-3}
14b	$\frac{1}{16\pi^2} \frac{y_u v}{\Lambda^3}$	2.9	$ \frac{y_d^2}{(16\pi^2)^2} \frac{v^2}{\Lambda} \\ \frac{y_d y_u}{(16\pi^2)^2} \frac{v^2}{\Lambda} $	4.1×10^{-3}
66	$f(\Lambda)\frac{v}{\Lambda^3}$	5.1	$\frac{y_d}{16\pi^2} \frac{v^2}{\Lambda} f(\Lambda)$	330

Sensitivity to different flavors than most constraining $0v\beta\beta$!

Process	Experimental limit	\mathcal{O}	$\Lambda_{ijkn}^{\mathrm{NP}} [\mathrm{TeV}]$
$K^+ \to \pi^+ \nu \nu$	$BR_{\text{future}}^{\text{NA62}} < 1.11 \times 10^{-10}$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 19.6$
$K^+ o \pi^+ \nu \nu$	$BR_{current}^{NA62} < 1.78 \times 10^{-10} [67]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 17.2$
$K_L \to \pi^0 \nu \nu$	$BR_{\text{current}}^{\text{KOTO}} < 3.0 \times 10^{-9} [71]$	\mathcal{O}_{3b}	$\sum_{i} \Lambda_{iisd} > 12.3$